
P E R S P E C T I V E

After more than a decade of collecting large neuroimaging
datasets, neuroscientists are now working to archive these
studies in publicly accessible databases. In particular, the
fMRI Data Center (fMRIDC), a high-performance computing
center managed by computer and brain scientists, seeks to
catalogue and openly disseminate the data from published
fMRI studies to the community. This repository enables
experimental validation and allows researchers to combine and
examine patterns of brain activity beyond that of any single
study. As with some biological databases, early scientific,
technical and sociological concerns hindered initial
acceptance of the fMRIDC. However, with the continued
growth of this and other neuroscience archives, researchers are
recognizing the potential of such resources for identifying new
knowledge about cognitive and neural activity. Thus, the field
of neuroimaging is following the lead of biology and chemistry,
mining its accumulating body of knowledge and moving toward
a ‘discovery science’ of brain function.

The observation that changes in regional cerebral blood flow accom-
pany neural activity during cognition1–3 has been a boon to the cog-
nitive and brain sciences, most notably through the use of brain
mapping technologies such as functional magnetic resonance imag-
ing (fMRI). Current research efforts for imaging the brain ‘in action’
are underway to rigorously explore the structure and function of cog-
nitive brain processes, thereby characterizing the mental properties
that make us uniquely human4. The fMRI studies range from the
examination of familiar cognitive processes such as human memory
and language processing to novel studies of racial threat5 and the neu-
rofunctional components of humor6.

This increasing dependence on brain mapping for exploring cog-
nition has led to an unprecedented data explosion that is pressing
neuroscientists to manage and analyze data on scales never before
imagined. Complete fMRI study data sets now routinely reach sev-
eral gigabytes in size, with the amount of brain image data collected
in some articles7,8 beginning to rival the current size of many biolog-
ical and physical science databases9,10. What is more, the size of fMRI
studies has grown over time, and what is now considered a large

fMRI study will seem relatively small within only a few years, as new
technological developments occur in scanner physics, engineering
and protocol design.

Unfortunately, despite this progress, much of these fMRI data are
not readily available to anyone beyond the original research team that
collected them. There are several reasons behind the fact that other
investigators do not typically get to work with the actual data that
went into the heavily processed images appearing in a published arti-
cle: (i) limitations of publication space on the complete representa-
tion of fMRI methods and findings, (ii) the proprietary feelings of
investigators against letting others view their data, (iii) the immensity
of data set size and (iv) the convention of only reporting tabular rep-
resentations of activity in individual image voxels. However, given
recent success stories from genomics11 and proteomics12 for organiz-
ing, archiving and mining large amounts of data from their commu-
nities, it may come as no surprise that cognitive neuroscientists are
now looking to unfettered data sharing and study archiving to better
understand these rich collections of dynamic brain data.

Data sharing sociology in neuroimaging
In 2000, with precisely such a goal, we founded the fMRIDC
(www.fmridc.org) at Dartmouth College. We sought to facilitate
progress in understanding cognitive processes through the collec-
tion, archiving and open distribution of neuroimaging data sets in
the peer-reviewed literature13. We reasoned that there could be sev-
eral positive outcomes to making the complete study data sets avail-
able to others. First, the study findings could be independently
confirmed, helping to strengthen the findings drawn by the original
authors. Second, new statistical methodologies could be applied to
the data, providing novel insights into cognitive processes. Different
studies could be compared, possibly identifying unanticipated func-
tional homologies between seemingly different cognitive tasks.
Moreover, these studies could be used to train the next generation of
neuroscientists by using fMRI data that had already undergone inter-
pretation by those who collected it and had published it in leading
journals. We decided to focus on fMRI data from published articles
and not to be concerned with unpublished data. This allowed us to
focus the enormous chore of collecting and managing the data, as
well as to construct an archive that was representative of the field’s
body of work.

We approached the editors of several leading journals and were
pleased by their initial support. To form the first corpus of data sets
and accompanying study material, a special issue of the Journal of
Cognitive Neuroscience (JOCN) was published containing a collection
of articles from leading laboratories (Vol. 12, Suppl. 2, 2000). The
authors of these articles generously provided the raw, processed and
results image data along with structural images and study meta-data
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and that the technological challenges to archiving data on this scale
were insurmountable. As a result, those journal editors who had ear-
lier expressed support, understandably decided to take a wait-and-see
approach, holding off implementing any new data-sharing policies
until the community had decided how best to proceed. As one of us
(M.S.G.) was the editor of JOCN at the time, a decision was made to
go it alone and see how far we could get.

Community resistance to data sharing is not new in science.
Geneticists first blanched at the idea of sharing their DNA sequence
data until the US federal government established the National
Center for Biotechnology Information (NCBI) and the GenBank14

archive in 1988. Likewise, the X-ray crystallographic community
began considering databases when Richard J. Roberts, a 1993 Nobel

(i.e., data that describe data, such as subject demographics, scanner
protocols and task information).

The neuroimaging and cognitive neuroscience communities
responded cautiously. Researchers wondered whether new science
was possible from archived fMRI data. Many young scientists were
concerned that giving others access to their raw data might under-
mine their research programs and hurt their chances at career
advancement. Established scientists were concerned that fMRI was
too new and immature, without fully established methods, to warrant
mandatory data sharing. Many worried that the fMRIDC would act as
self-appointed data-police, passing judgment on a study’s validity or
credibility. Some felt that there was little chance that such an effort
would acquire any support—or get anyone to contribute their data—

BOX 1 fMRI data processing pipelines
Much in the way that a biological tissue sample is assayed to ultimately reveal genetic information, neuroimaging time-course data often
undergo a number of digital processing operations in preparation for subsequent statistical analyses and the localization of brain activity56.
This can be envisioned as an fMRI data processing pipeline (see illustration below). Data saved from the MRI scanner are first stored as a
collection of two-dimensional (2D) slices in which the spatial phase and frequency of the brain image are represented—often referred to as
k-space. This data is converted to a 3D image space using a Fourier transform to become what many refer to as the ‘raw’ image volume data,
representing one volume of brain data for each time point in the series. Collected on the order of one volume every 2 s, these individual
image time courses alone can grow to several megabytes or more of data. Collected across subjects, with one or more time course per
subject, the raw data set for an entire study can grow to several gigabytes. This is typically the earliest form of the brain image data upon

which investigators begin their analyses.
Despite efforts to minimize subject

movement at the time of scanning, the raw
image must be subjected to rigid-body
spatial realignment routines to remove
motion-related effects. Still other
processing steps may be applied, including
corrections for slice timing, spatial
distortions, physiological effects, etc. The
next step is averaged, aligned functional
image co-registration with a high-resolution
anatomical scan, followed by non-linear
spatial image warping of the anatomical
into a known stereotactic atlas space. This
controls for anatomical variation in brain
size and sulcal and gyral patterns across
subjects and places the functional data into
a common coordinate system. The spatial
normalization process is ordinarily done
with respect to brain atlases such as that of
Talairach and Tournoux57, which
researchers then use to report the
statistically significant locations by

providing their coordinates as x, y and z values in this space with respect to an imaginary set of orthogonal planes passing through the
anterior commissure (the small bundle of fibers connecting the cerebral hemispheres located behind and beneath the genu of the corpus
callosum). Often, as a final step before statistical modeling, the resulting images are spatially filtered using a Gaussian smoothing kernel to
reduce the effects of misregistration and increase the signal-to-noise ratio of the image time course.

The predominant method of statistical analysis is to use the General Linear Model (GLM) to obtain regression coefficients for predictor
variables pertaining to stimulus presentations contained in an experimental design matrix58. These coefficients are assessed for statistical
significance using voxel-wise Student’s t-tests, and these are displayed as statistical parametric brain maps. Researchers will often represent
regional activation using only the most statistically significant voxel (‘volume element’) in a cluster of activity and provide tabular summaries
of these ‘local maxima’ in their published articles. So what starts out as gigabytes worth of image data is systematically processed, analyzed,
and ultimately compressed for publication into a neat table and several overlay figures of task-related brain activity.

The fMRIDC seeks to capture data from key points in this process (indicated in red) in order to have as complete a set of information as
possible so that an independent investigator may begin with the study’s raw image data, follow all the same processing steps, and, using the
same experimental meta-data, obtain the same statistical results as provided by the original study authors. Thus, this ‘digital assay’ may be
reproduced, verified or altered by others to explore new methods and interpretations of the data.
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P E R S P E C T I V E

laureate, first urged the formation of a
shared database for crystallography. Society
newsletters from the mid-1990s show a
series of vitriolic exchanges between those
in favor and those against. The argument
raged on until the governing bodies in the
field recognized the benefits that could be
gained through data-sharing and began
requiring their membership to deposit
structures in archives like the Protein Data
Bank (PDB)15. The PDB effort, begun in the
early 1970s by a small collection of like-
minded scientists wishing to gather struc-
ture data for the purposes of modeling and
visualization, is now recognized as the pre-
mier world resource for protein data. The
journal Science decided to require its con-
tributors in the field to deposit their
genomic sequence and crystallographic
coordinates in such public databases, but
allowed the contributors to wait for a year
after publication before meeting the
requirement16,17. Although companies
interested in commercially exploiting the
data supported the delay, academic scien-
tists wanted quicker access to the informa-
tion. Now, Science and Nature18, as well as
The Proceedings of the National Academy of
Science (PNAS)19,20, require contributors in
the field to deposit their material in these databases as a condition of
publication. With the potential and promise of these databases
becoming clear, the data-hold policies have been shortened or dis-
appeared altogether.

As the fMRIDC effort has progressed, much of the initial concern
from the community about contributing data has significantly dimin-
ished, with researchers increasingly being supportive and enthusiastic
about contributing their study data to the archive. After recently
implementing an online submissions process, whereby authors must
indicate their agreement with the policy on sharing data by checking a
box in a web form, the JOCN has witnessed a doubling of imaging-
related papers. Other neuroscience journals are now strongly encour-
aging authors to contribute their data to the archive21. We have also
expanded our services beyond simple data curation toward develop-
ing fMRI data management software tools that make data sharing,
exploration and interoperability with imaging data easier (Fig. 1).
Finally, many of our neuroimaging colleagues have recognized the
potential for how the archive can be used to test new hypotheses
about cognitive function, where published study data might serve as
valuable control data for their own fMRI studies, and how the data in
the archive might be combined to perform large-scale, population-
level fMRI analyses. These satisfying outcomes indicate that data
archival efforts, like the fMRIDC, are fast becoming an essential
resource for neuroscience researchers22.

Which data should be shared?
One critical question in the development of a database for pub-
lished fMRI studies has been the question of which data from
image processing and analysis pipelines ought to be shared23,24.
Should we bother with the raw data at all? Are the final results alone
not good enough? Why start now when neuroimaging methods are
still in their infancy?

Some authors have specifically encouraged “sharing the most valu-
able data type first”—arguing that tables of neuroimaging summary
test statistics and accompanying Talairach atlas spatial coordinates
alone possess the greatest scientific value25. This point of view main-
tains that neuroimaging data increase in worth with every step of
mathematical and statistical processing. However, the amount of
mathematical information contained in a processed data set about
the original form of the data remains the same or is reduced by that
processing26. So although this basic approach is aimed at being prac-
tical and parsimonious, sharing only lists of statistical maxima may
not be suitable when the goal is to extract the information contained
in these routinely large, multi-dimensional and highly structured
data sets (extracting all the scientific worth from the data). For
instance, researchers wishing to investigate alternative image pro-
cessing methods or to apply novel time series analytic approaches do
not benefit from having only such summary results. Simply collect-
ing the local maxima provided in a published study is highly useful in
a bibliographic sense, but by itself, provides only limited insight into
the total information that is contained in the raw and processed
forms of the image data.

Providing users access into the neuroimaging data processing
pipeline itself seems to best satisfy the range of potential uses of
archived data27 (Box 1). The fMRIDC asks authors to provide the data
from these several key points in their fMRI data processing chain (for
example, raw, preprocessed and final-result images plus high-resolu-
tion anatomical volumes) along with an accurate description of how
the data were processed. Given this information, anyone should be
able to apply the identical data processing routines as described by the
original study authors, in the same order, and obtain the same brain
activity findings. On the other hand, some users may only be con-
cerned with the statistical images that are the end result of an fMRI
analysis, wishing to use them in meta-analyses or new forms of data
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Figure 1 The use of archived neuroimaging data can lead to new findings from the original study data
or, simply, novel ways of visualizing previously reported effects. For instance, a recent study59

(fMRIDC Accession Number 2-2003-113HT) focused on the functional anatomy of ventral temporal
cortex and prefrontal cortex during working memory. In the original published article, only two
representative slices were shown in the figure from each region of interest. With online availability, the
actual fMRI statistical map can be explored using web-enabled image viewers, and brain regions may
be inspected for activation patterns not necessarily described by the original study authors—such as
browsing the experiment’s unthresholded random-effects Student’s t-test map (a) for the main effects
of working memory encoding compared against baseline activity. Data may then be requested or
downloaded and subjected to novel forms of visualization or subsequent analyses using tools
interoperable with the format of image data. For example, a user can view the same results image data
from the study in (a), but represented on a cortical surface model using the Caret software package
from Washington University (b). This interoperability of data and software tools to support the
published literature is a valuable and much sought-after feature for neuroscience databases.

©
20

04
 N

at
ur

e 
P

ub
lis

hi
ng

 G
ro

up
  

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
en

eu
ro

sc
ie

nc
e



P E R S P E C T I V E

visualization. Other researchers may wish to apply statistical model-
ing approaches other than those used in the original article; they
would therefore be most interested in the preprocessed image data
(for example, after spatial realignment and normalization). Finally,
still others may be interested in comparing and contrasting multiple
study data sets against one another, which would require a uniform
data processing pipeline across studies starting from raw data.
Therefore, the fMRIDC archives the image data in its rawest form
after image reconstruction, after the last stage of preprocessing and
before statistical modeling and significance testing. The archive also
includes statistical results and parameter images, as well as the accom-
panying high-resolution structural image data. Intermediate versions
of the data are not needed, provided a suitable description of the data
processing chain is also provided. This ‘multiple entrypoint’ approach
offers the greatest accessibility across different uses in new science.

Study ‘meta-data’ are also important to consider because they accu-
rately characterize the study protocols and experimental design
matrix information. These include subject demographics, stimulus
timing and scanning parameters. One approach to designing a data-
base to store functional neuroimaging data is to use existing well-
understood, relational, spatial and object-relational database
technology. Several free (MySQL, PostGres) and commercially avail-
able (Oracle, DB2) solutions exist. However, for heterogeneous col-
lections of studies from different laboratories, often using differing or
new experimental techniques, these formats may be limited and
unable to adapt readily as the field evolves.

In recent years, a new method for organizing scientific data has
received growing attention28. These ‘knowledge bases’ are databases
organized according to an ontology29, rather than a database schema,
and occupy a middle ground between very loose and very rigid data
architectures. Ontologies describe the knowledge about a domain
using declarative language structures (for instance, an MRI scanner
“is a” measurement device; a brain image “has a” data-type).
Definitions associate the names of entities in a particular domain
(such as classes of items, relations between them, and their functions)
with human-readable text describing what the names mean, and pro-
vide formal axioms that constrain the interpretation and well-formed
use of these terms. Ontologies are advantageous in that they have
been developed to handle and search over qualitative information as
easily as the more traditional formats deal with quantitative informa-
tion (for example, see The Cyc Public Ontology; www.cyc.com).
These concepts have given rise to the notion of a Semantic Web as an
emerging representation of data on the Internet in which information
is given well-defined meanings, better enabling people and computers
to work in cooperation30.

These approaches are ideal for encapsulating data from often
highly heterogeneous fMRI studies31. They can have the structure
required for data sharing and reuse, while maintaining the flexibil-

ity required for accommodating variations from lab to lab,
researcher to researcher, and as the field evolves. Because ontologies
are a relatively new idea for scientific databasing, they are often
deployed as an add-on to a traditional database, or as a kind of con-
nective tissue to enable a limited data exchange between more rigid
formats. This approach makes sense in a context of pre-existing
data management tools that need merely to be interconnected. But,
more importantly, ontologies can serve as the basis of a canonical
representation—the primary format on which data updates are
performed, the logical representation and the in-memory format
around which tools and user interfaces are built—for the fMRI
community. By merging the requirements for fMRI data manage-
ment with those for neuroimaging data sharing and exchange, the
fMRIDC has been making significant progress toward the con-
struction of extensible fMRI study ontologies.

But why begin the task of fMRI databasing right now? Neuroimaging
data processing methods are still being perfected, and procedures
within the field are still in flux. Shouldn’t the brain imaging community
wait ten years until methods are better established?

Databasing efforts in genomics and proteomics, though under-
way for nearly 30 years (in the case of proteomics), have only in the
last few years begun to be fully appreciated as the rich scientific
resources that they are. Also, though some fields in neuroscience are
more than 50 years old, many of the current databasing efforts are
less than ten. For instance, researchers in the single- and multi-unit
recording community have begun forming neuronal property data-
bases32 in order to continually collect and contrast novel approaches
for looking at their data because computational simulations of neu-
rons and their interactions are an ongoing and exciting research
activity33. To miss this opportunity to archive valuable, published
fMRI data during the rise of cognitive neuroimaging, and not cap-
ture key instances of the ever-growing body of work in this field
would be unfortunate, indeed.

Financial incentives for sharing primary data
Several US funding agencies are now taking an active role in promoting
data sharing, in particular for the neurosciences34. The National
Institutes of Health (NIH; http://grants.nih.gov/grants/policy/
data_sharing) and The National Science Foundation (NSF Social and
Behavioral Sciences data sharing policy; www.nsf.gov/sbe/ses/com-
mon/archive.htm) have each recognized the benefits of sharing pri-
mary research data for advancing science and have implemented
policies requiring data sharing. Research funding organizations in
other countries, like Great Britain (UK Medical Research Council;
www.mrc.ac.uk/strategy-data_sharing_policy), have also instituted sci-
entific data sharing requirements. Each has noted that sharing data
reduces unnecessary duplication of data collection, provides added
value to research publications, and spreads the cost of doing research
across a diverse set of investigators. In a field like neuroimaging
research, where data collection can be expensive and study replication is
infrequent, permitting researchers to access previously collected data
has many economic advantages for funding bodies.

Justifying how researchers will share their data is now expected as
part of proposals for research funding. Beginning with the October 1,
2003 receipt date, investigators submitting NIH grant applications
seeking $500,000 or more in direct costs in any single year are
expected to include a plan for data sharing or to state why data shar-
ing is not possible (http://grants.nih.gov/grants/guide/notice-
files/NOT-OD-03-032.html). In the case of neuroimaging, publicly
accessible repositories like the fMRIDC provide a convenient means
for researchers to satisfy such requirements.
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Table 1  fMRI Data Center archive summarya

Number of studies: 70 complete fMRI studies

Number of subjects across studies: ~1,000 individual subjects

Number of functional runs: >5,000 time series runs

Individual brain image volumes: >500,000 image volumes

Average fMRI study size: 6 Gigabytes

Maximum fMRI study size: 20 Gigabytes

Overall archive size: ~2.6 Terabytes

Total number of files being managed: ~22 million

Number of data set requests fulfilled: 1,239

aAs of 3/21/2004

©
20

04
 N

at
ur

e 
P

ub
lis

hi
ng

 G
ro

up
  

ht
tp

://
w

w
w

.n
at

ur
e.

co
m

/n
at

ur
en

eu
ro

sc
ie

nc
e



P E R S P E C T I V E

Compared to positron emission tomo-
graphic (PET) scanning, which involves
injection of radioactive isotopes, fMRI is rea-
sonably inexpensive, which has been part of
its appeal to brain scientists as a research tool.
Nevertheless, the costs associated with stud-
ies of brain imaging do add up. Many fMRI
centers charge investigators between $200
(US) and $700 per hour to use the scanner
and its facilities. Additional expenses associ-
ated with subject reimbursement ($20–$100
per hour), staff salaries, study sample size,
journal of publication and indirect costs all
contribute to the final expense of what
becomes an article published in a peer-
reviewed journal. It is not impossible for a
complete fMRI study to have a total cost in
the hundreds of thousands of dollars by the
time the article describing it appears in print.
Formal sharing of data with the neuroscience 
community through open efforts like 
the fMRIDC allows a great many more
researchers to use the data, thus mitigating its
price tag. Secondary analyses of these image
data can then be done by other researchers at
a smaller cost than the original study. These
can be used as a prelude to and justification
for new, hypothesis-driven fMRI data collec-
tion. Undoubtedly, funding agencies in the
US and elsewhere find these sorts of cost sav-
ings an attractive feature of data sharing and
a better return on taxpayer investment.

Growth in leaps and bounds
Since the first data set was made available, the
size of the fMRIDC archive has grown to
exceed 2.6 terabytes (1 TB = 1,024 gigabytes
(GB)) of data from over 70 different fMRI
studies of cognitive function (Table 1). These include studies from a
range of cognitive domains including investigations of human mem-
ory encoding and retrieval35, the processing of visual information36,
motor representation37, attention38 and working memory processes39.

At present, the fMRIDC has fulfilled over 1,200 study data requests
from researchers around the world. From user feedback question-
naires, the data obtained through the fMRIDC is being used for 
(i) new analyses across data from multiple studies, (ii) teaching pur-
poses (both undergraduate and graduate), (iii) further region-of-
interest analyses of brain regions that were not the focus of the
original published article, (iv) application of new statistical
approaches (e.g., functional connectivity in contrast to the general
linear model) and visualization methods and (v) for benchmarking
existing neuroimaging software tools.

Prominent databasing efforts in biology and the space sciences
(Table 2) have routinely required ample data storage to hold their
contents, as well as high-end processing power to conduct new
analyses of their data. Neuroimaging data sets clearly require high-
performance computers (HPC) and copious amounts of data stor-
age capability. The fMRIDC uses HPC hardware and Grid-based
software40 with a view toward large-scale data storage and for sup-
porting large-scale neuroimaging ‘mega-analysis’ and modeling
projects. The HPC configuration includes an array of multiproces-

sor compute engines, each with an accompanying server to handle
individual user access. Multi-terabyte storage currently exists with
potential to grow to over 10 TB of spinning disk space. The system
also uses hierarchical storage management facilities to interface
with a high-volume, near-line storage 100 TB robotic library. Users
interested in performing tera-scale levels of fMRI analysis across a
number of different studies can use fMRIDC systems with 
Grid-based technology rather than strictly relying on their own
local single-processor machines. The Globus Alliance toolkit
(www.globus.org), specifically designed for distributed computing,
enables geographically distributed users to share data, computa-
tional resources and software tools.

Though modest in contrast to the larger computer systems in the
earth (The Earth Simulator Project; www.earthsimulator.edu) and
ocean sciences (NOAA; www.cio.noaa.gov/hpcc/), this represents a
significant computational effort. As Grid-enabled, distributed users
increase to levels comparable to the proteomics (such as the fold-
ing@home effort in the molecular modeling world), physical (The
GridPP Project for particle physics; www.gridpp.ac.uk/) and mathe-
matical (the ZetaGrid; www.zetagrid.net) sciences, such efforts bring
an emerging degree of computing and intellectual power to modeling
and visualization of complex cognitively induced patterns of func-
tional neural activity.
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Table 2  Notable scientific databases

Name Year Governing institution(s)/ Current archive Notes
founded funding status

Protein Data Bank 1971 Research Collaboratory for Number of Protein Expected to grow

(www.rcsb.org/pdb/) Structural Bioinformatics Structures: 21,998 at a rate of about

(RCSB; Rutgers, UCSD, DB Size: 30% per year.

NIST); NIGMS, NLM, NSF 15 Gigabytes (GB)

GenBank 1982 National Center for Base pairs: Continuously updates

(www.ncbi.nlm.nih.gov/) Biotechnology Information 32,528,249,295 gene assemblies,

(NCBI) – National Library Sequences: incorporates new

of Medicine (NLM) 25,592,865 data, fills in

Current DB Size: existing gaps, and

138 GB increases overall

(as of 12/2003) accuracy. Released

to the public on 

a regular basis.

Holdings approx-

imately double

annually.

Visible Human Project 1986 Visible Human Project; High-resolution Widely used in

(www.nlm.nih.gov/ NLM image sections of education and training.

research/visible/ two human cadavers Also used to devise

visible_human.html/) Current DB size: methods for visual-

15 GB (male) ization of anatomical

40 GB (female) data.

55 GB Total

Sloan Digital Sky 1993 Astrophysical Research Number of Used for characterizing

Survey Consortium (ARC); Celestial Objects: the distribution of

(www.sdss.org/ Alfred P. Sloan Foundation, 100 million celestial objects

sdss.html) the NASA, NSF, DOE, the Current DB Size: within a particular

Japanese Monbukagakusho 15 Terabytes (TB) region of the sky.

and the Max Planck Society Ultimate storage 

requirement of 50 TB
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P E R S P E C T I V E

Neuroimaging data re-use for understanding cognition
These initial outcomes indicate that data archival efforts like the
fMRIDC are well on their way to becoming an essential resource for
neuroscientists. But is anyone actually using previously published
neuroimaging data to conduct new research? We know of several pub-
lished studies that have done so. One was a reanalysis of four com-
plete fMRI study data sets to investigate temporal components related
to human consciousness41, even though consciousness was not
specifically investigated by the original authors. Another conducted a
multivariate discriminant analysis to explore whether the overall pat-
tern of fMRI activity could be used to predict what category of visual
stimuli subjects were viewing42. A recent study of resting-state or so-
called ‘default-mode’ activity43 in previously published data from
older adults with Alzheimer Disease (AD) and age-matched controls7

identified reduced resting-state activity in posterior cingulate and
hippocampal areas in the AD sample, suggesting a source for com-
monly observed reduced metabolism in these patients44.

Two other examples of fMRI data re-use, in particular, are also
worth mentioning. Areas of increasing interest to fMRI researchers
are functional connectivity analysis45 and large-scale neural model-
ing46, wherein analysis of data extends beyond the identification of
discrete activation hot-spots to that of examining the inter-regional
patterns of correlation. These patterns are reflective of the degree to
which one brain area is functionally correlated with another47. This is

a useful tool, as the mechanisms of many
cognitive phenomena are very complicated
due to the huge range of interconnected and
compounded processes. Modeling these con-
nections can provide insight into how cogni-
tion may be ‘wired’ and can be used to make
testable predictions for use in future fMRI
experiments48. In a reanalysis of data from
the fMRIDC, Mechelli et al.49 estimated neu-
ronal interactions that mediate category
effects using a functional connectivity mod-
eling technique called Dynamic Causal
Modeling (DCM). They used a Bayesian
framework to estimate and make inferences
about the influence that one region exerts
over another and how this is affected by
experimental changes50 (Fig. 2). They con-
cluded that category-specific effects in occip-
ital and temporal regions were mediated by
inputs from early visual areas. In 
contrast, the connectivity from the supe-
rior/inferior parietal area to the category-
responsive areas was unaffected by the spatial
form of the presented stimuli. Their provoca-
tive findings indicate that category-specific
effects in the occipital and temporal cortices
may be driven by bottom-up, as opposed to
top-down, mechanisms.

The reproducibility of fMRI-related effects
in previously published data has also been
explored. Important in measuring statistical
power, reproducibility is defined as the extent
to which the active status of a voxel remains
the same across replicates conducted under
the same conditions. Liou et al.51 used an
empirically based Bayesian method for esti-
mating blood oxygenation level–dependent

(BOLD) effects due to experimental stimuli, the threshold optimiza-
tion procedure for assigning voxels to the active status, and the con-
struction of reproducibility brain maps. They found that subjects in a
study obtained via the fMRIDC seemed to exercise more than one
mechanism in responding to visual objects while performing alter-
nately matching and passive tasks. One mechanism appeared to evoke
a pattern of BOLD activity in ventromedial temporal areas, in close
agreement with what was reported in the original published article.
But some subjects showed additional activity in the precuneus and
posterior cingulate, suggesting a second cognitive mechanism.
Additionally, the latency between the stimulus presentation and the
peak of the hemodynamic response function varied considerably
among individual subjects according to types of stimuli and experi-
mental tasks. Overall, the patterns of activity were found to be statis-
tically reproducible in at least four out of six subjects involved in the
experiment. The analysis by Liou et al. strongly suggests that the sub-
jects in this experiment used different cognitive processing strategies,
recruiting activity in additional regions to aid object-specific areas,
when making their responses to visual stimuli.

What is interesting about the Mechelli and Liou studies is that they
each, independently, used the object categorical processing fMRI study
of Ishai et al.36, which initially reported differential patterns of activa-
tion in response to categorical stimuli in bilateral regions of the ventral
and dorsal occipital cortex and in the superior temporal sulcus. But

478 VOLUME 7 | NUMBER 5 | MAY 2004 NATURE NEUROSCIENCE

Category A
responsive

regions

Category B
responsive

regions

Category C
responsive

regions

V3

Parietal
cortex

? 2A ? 2B ? 2C

? 1A ? 1B ? 1C

Visual object stimuli

Category-
related 
effects

Iv
el

is
se

 R
ob

le
s

Figure 2  Functional connectivity modeling is one way in which fMRI time-course data may be reused,
not to identify individual activation foci, but to explore how these foci are interacting. This
connectivity diagram (based on Figure 1 in ref. 49) includes V3, a superior/inferior parietal area, and
the category-responsive regions in the occipital and temporal cortices. Inputs to the connectivity
model “Visual Object Stimuli” encode the presentation of visual objects (i.e., houses, faces and
chairs) and enter the model through V3. Weights on the various connections are determined through a
Bayesian framework and indicate the strength of that connection in explaining model variance.
Connectivity analyses done on publicly available fMRI data are an interesting means of exploring new
hypotheses about fundamental cognitive processes.
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these new examinations explored the data with entirely unique
approaches—at once underscoring the importance of the originally
reported effects and also offering new insights into the underlying
brain systems in visual processing and how fMRI data might be reused
to generate new hypotheses for future study. Such secondary analyses
provide new perspectives on data that may reveal effects not conceived
of by the original authors, nor envisioned by theoreticians.

Neuroinformatics
In response to the sheer volume of data now collected across disci-
plines, a great deal of neuroscience is rapidly moving beyond its roots

as simply an empirically based, hypothesis-testing endeavor, toward
computationally based discovery science as well—the examination of
large and disparate collections of biological data looking for unseen
patterns that might provide clues to underlying mechanisms52. Brain
imaging researchers must now also be adept computer programmers,
statisticians and mathematical modelers in order to fully mine the
information present in their data. This has contributed to the emerg-
ing role of ‘neuroinformatics’, a unifying discipline at the nexus of
information technology, computer science and the neurosciences53,54.

A number of databasing efforts have been established to accom-
modate the interest in sharing data from other neuroscience
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Table 3  Online neuroscience databases

Database name Principal modality Data provided Availability Species Principal funding Website URL
sourcea

BIRN Microscopy; Neuroimage data; Limited public access/ Human, NCRR http://nbirn.net

MRI cell photomicrograph greater access to Mouse

participating BIRN

centers

BRAID fMRI Neuroimages Limited access Human N/A www.rad.upenn.edu/sbia/braid/

publications/all.shtml

BrainMapDBJ PET/fMRI Neuroimaging Limited public access/ Human NLM www.brainmapDBJ.org

results local maxima greater access to 

contributing researchers

BREDE fMRI VRML, XML Open Human NIMH/HBP, http://hendrix.imm.dtu.dk/

Non-US software/brede

CoCoMac Single and Neural Open Non-human Non-US www.mon-kunden.de/cocomac

multi-unit connectivity

recordings data

EarLab Single/multiunit Cell recording Open Non-human NIMH/HBP http://earlab.bu.edu

recording of time series

auditory neurons

ECHBD PET, fMRI Neuroimage data Limited access Human N/A www.dhbr.neuro.ki.se/ECHBD/

Database/index.html

fMRIDC fMRI Raw, processed, Open Human NSF, WM Keck, www.fmridc.org

results brain NIMH/HBP

images and study

meta-data

ICBM PET, MRI, fMRI, Neuroimage data Limited access/ Human NIMH/HBP, www.loni.ucla.edu/ICBM/

EEG, MEG greater access to NCRR, index.html (see also

International private www.loni.ucla.edu)

Consortium for funding

Brain Mapping

(ICBM) centers

SenseLab Single/multi unit Cell recordings from Open Non-human NIMH/HBP www.senselab.yale.edu

recording multiple sources

Surface Structural MRI Digital cortical Open Human and NIMH/HBP http://brainmap.wustl.edu:8081/

Management surface models non-human sums/index.jsp

System (SuMS) primates

aWhere information was available from the database web site. NCRR, National Center for Research Resources; NLM, National Library of Medicine; NIMH, National Institute of Mental Health;
HBP, Human Brain Project (NIMH); NSB, National Science Foundation.
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domains (Table 3). Many of these are supported through the
Human Brain Project (www.nimh.nih.gov/neuroinformatics/
index.cfm), a multidisciplinary, multi-institute NIH program seek-
ing to promote neuroscience data sharing, cross-cutting collabora-
tion and the development of neuroinformatics tools to be used in
processing, visualizing and integrating these rich sources of brain
data. Other scientific interactions are occurring also in broad-based,
inter-institutional collaborations, aimed at developing nationwide
infrastructures for cognitive and computer scientists to share data,
computational and software resources. For example, the neurosci-
entific thrust of the National Partnership for Advanced
Computational Infrastructure (NPACI; www.npaci.edu) has for
several years encouraged sharing of data and use of the computa-
tional and large-scale data storage resources based at the San Diego
Supercomputing Center (www.sdsc.edu). Likewise, the Biomedical
Informatics Research Network (BIRN; www.nbirn.net; see p.
467–472 this issue55) seeks to cross-reference imaging and compu-
tational resources between parti-cipating centers.

Collectively, these projects are now at a crossroads where they
must look beyond content-building within their respective fields
and migrate toward connecting information across databases and
associated resources to form a larger, web-enabled, interoperable
network of neuroscientific data, tools and knowledge. The Society
for Neuroscience (SFN) has recognized the wealth of information
available in these databases, their potential utility as tools for
research and education (see Autumn 2003 SFN Neuroscience
Quarterly for commentary by former SFN president H. Akil;
http://web.sfn.org/content/Publications/NeuroscienceNewsletter/2003f
all/message.html), and is taking a leading role in linking these
efforts through a common website entitled the Neuroscience
Database Portal (http://big.sfn.org/ndg/site). The Human Brain
Project also provides a portal that cross-references these and other
online sources of data and information (http://ycmi-hbp.med.
yale.edu/hbpdb). As these portals develop further and become fully
implemented over the next few years, brain researchers may be able
to tunnel from the systems level down to the molecular level of spa-
tial resolution, explore neurally related electrical and magnetic field
changes across the scalp, and directly perform basic neuroimaging
meta-analyses, all via their web browsers.

New databases arise often, while many others go stale over time. It
can be difficult for one to know which are best suited to one’s needs
and have a track record of success. We believe that organizations like
the SFN and HBP are best suited to evaluate and rate available data-
bases for content, accessibility, ease of use, longevity, interoperability,
and so on, and to direct researchers to sites where they can request as
well as contribute data. Although they would probably avoid support-
ing any particular database, these leading scientific societies can have
a very important role by providing a periodically reviewed stamp of
approval to those data resources listed in their online portals.

Conclusions
Large-scale brain imaging archival efforts like the fMRIDC have
begun to pay significant scientific dividends for cognitive neuro-
science. Other databases, too, hold great promise. The involvement of
other researchers as well as multiple scientific communities in exam-
ining published brain imaging data should be welcomed, not feared,
as it will serve to strengthen and improve the inferences and conclu-
sions we can make from our data. As a result of these infrastructural
and data resources, novel research, hypotheses and education using
existing data can reach across scientific disciplines—engaging work-
ers from other fields to apply sophisticated new tools for data analysis

and integration. Bright minds, new points of view and sophisticated
tools will do much to organize and help focus ideas about the neural
processes represented in these data.

These projects are not trivial, however, requiring a dedicated staff
to manage study curation and maintain computer systems.
Government mandates to share and archive primary research data
cannot be successful unless federal agencies are willing to support the
infrastructure needed to make such sharing easy and accessible to
others. Further progress will certainly necessitate that funding bodies
continue to invest in new fMRI experimentation, but also in support-
ing study data repositories, thereby ensuring their survival as essential
archival and scientific resources.

We expect that, in time, because of the enormous scientific and
educational benefits, the sharing of neuroimaging and other brain
data will simply be an expected part of publishing in leading periodi-
cals like this one. In so-doing, neuroscience will be able to fully lever-
age its collected scientific knowledge into a rich understanding of
complex brain processes.
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